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Abstract

An asymptotic solution of the Boltzmann equation is developed for

ICR absorption, without restrictions on the ion-neutral collision fre-

quency or mass ratio. Velocity dependence of the collision frequency

causes deviations from Lorentzian line shape.
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1. Introduction

Most of the work on the theory of ion cyclotron resonance (ICR)

absorption spectra has been restricted to the case of velocity-inde-

pendent ion-neutral collision frequencies (Maxwell 
model), or has in-

volved the essentially equivalent assumption that the average of 
a

product is equal to-the product of the averages 
[1-61. These theories

all yield Lorentzian line shapes for the steady-state 
absorption in a

weakly ionized gas, provided that the effects of walls and chemical

reactions can be ignored, and that the collision frequency is much

less than the cyclotron frequency. The Maxwell-model restriction has

been removed for electron absorption, but only at the cost of the 
new

restriction of ion mass much less than neutral mass (Lorentz model)

[7,8]. For this model it was found that the line shape depended

strongly on the velocity dependence of the collision frequency. The

problem could also be solved for the special case 
of ion mass much

greater than neutral mass (Rayleigh model) [9], but, as shown 
below,

the line shape will again be Lorentzian.

The purpose of this communication is to lift the restrictions on

ion-neutral collision frequency and mass ratio, so that deviations from

Lorentzian line shape can be interpreted in terms of the nature 
of the

ion-neutral force law.

2. Theory and Results

The fundamental assumption is that the ion density, n , is much

less than the density of neutral gas molecules, N , so that ion-ion

collisions can be neglected compared to ion-neutral collisions. 
The

collision term of the Boltzmann equation then becomes linear, and 
can

be expanded in a series and the resulting equtions solved by a moment

method [10,111, without restrictions on collision frequency or mass



- 3 -

ratio. In oider 'o illustrate the dependence of the ICR line shape on

the ion-neutral force law, we consider a very simple situation. Ion-

neutral collisions are assumed elastic. A uniform static magnetic field

B points in the y-direction, and a uniform alternating electric field

E = E sin wt points in the z-direction. The ion density is assumed
-Ao

uniform so that boundaries are neglected, and the ion-neutral colli-

sion frequency is assumed small compared to the cyclotron frequency

we = qB/m , where q and m are the charge and mass of the ion.

Finally, we seek only a steady-state solution, so that we can neglect

the initial conditions of the ions, which decay exponentially in time.

The theory is not limited to this specialized situation, and the fore-

going restrictions can be relaxed (except for n << N and elastic

collisions), although at the price of some additional mathematical

complication.

Solutions of the linearized Boltzmann equation can be obtained

by expanding the collision operator in terms of a complete set of

orthogonal functions and forming moments [10]. We use the Burnett

functions, the eigenfunctions of the collision operator for the Maxwell

model,

(r) c m(r) c 2 ) m im (1)
tm S+1/2c ) P (cos ) e ()

c = v (m/2kT)1/2  cos c/c , (2)

where Srl) is a Sonine polynomial, P m l an associated Legendre
e+i/2 t

polynomial, v the ion velocity, and T the neutral gas temperature.

The infinite set of moment equations must be solved by some truncation

and iteration procedure; using the scheme in [11,12] we obtain for the

p-th approximation the expression,
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+ r qI m 11/2 (r)
at rr m 2kTJ o \c Em/

P P

( (r) r+p-1 (s)+ vxB) V - N E (1-6 ) b (m) ( (3)
P p s=so p-r-s|

where the pointed brackets signify averages over the ion distribution

function. The coefficients b (Um) are matrix elements of the lin-rs

earized Boltzmann collision operator for multicomponent gas mixtures with

(r)
respect to the m , and are defined and tabulated in Ref. [12-14].

Dependence on composition of the mixture is entirely in the b (Zm)
rs

which are linear in the mole fractions. The summation in the last term

begins at s = r-p+l or 0 , whichever is larger, and includes only

those matrix elements less than p units off the diagonal.

The iteration begins at p=l1 by neglecting the terms in the sum-

mation and solving for (r) , and then proceedings to p=2,3,etc.

The mean power absorption A from the electric field is the time aver-

age of

A(t) = nq(.v(t) ) . E(t) = nqE (vz(t) > sin wt . (4)

Thus we must solve eq. (3) for 10 (t) E cz(t) . For p=1
p p

we obtain two coupled differential equations from eq. (3), and for

p=2 we obtain eight partially coupled differential equations. Solu-

tion of these increasingly large sets of differential equations leads

to a series for A in powers of (E/N)2 . The first iteration neglects

all off-diagonal matrix elements and yields the usual Lorentzian line

shape for T [1,2]. This result will be exact for very weak electric

fields, or for all electric fields if the off-diagonal matrix elements

are zero. This is the case for the Maxwell model and the Rayleigh model,
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which thus always give Lorentzian line shapes.

Deviations from Lorentzian line shape first appear in the second

iteration, which yields

22 1 2 1
nq Eo 1 clC2 (

- 1 + +0 ( ) + ... , (5)
4mv 1 + 0n (1 + Q ) (c2 + 2)

where v E Nb00(10) is the zero-field mean collision frequency of the

ions for momentum transfer to the neutrals in the mixture, and

n = WAV)I , (6)

= (qEo /m) (m/2kT)1 /2  (7)

5b01(l0) b010)
C 3b l(00) 6b (20) (8)

11 00

c2 = bl1(10)/b00(10) . (9)

A physically interesting feature of the above formula is the occurrence

of b01(10) , which depends strongly on the nature of the ion-neutral

force law. For ions in a single gas of mass M the expressions for

c1 and c2 become

c 1 (6C - 5) (M/m) (llm + 6MA ) (5m + 3MA ) (10)
1 12

2  + 8 * -2

c2  (Sm + M + mMA ) (m + M) , (11)

where C and A are conventionally defined [15] ratios of colli-

sion integrals. The crucial part coming from b01(10) is the factor

6C - 5 , which also plays a crucial role in the theory of thermal dif-

fusion in gases. Discussions of the relation of thermal diffusion to

molecular collisions and force laws can therefore be taken over directly

and applied to the relation between ion-neutral interactions and devia-
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tions from Lorentzian line shape [16,171.

As an illustration of the effects on line shape of a repulsive ion-

neutral force law, we consider the case of rigid spheres and equal

masses (m=M) , for which c - 17/96 and c2 = 7/5 . The results

are shown in fig. 1 for several values of . The line is Lorentzian

for ( = 0 , but the absorption is less for > 0 because the effec-

tive collision frequency increases with increasing ion energy for repul-
-4

sive potentials "harder" than r . The effect is greatest at the

line center because the ion energy is greatest at resonance. These re-

sults are qualitatively the same for any gas temperature.

For a more realistic ion-neutral interaction, such as a long-range

attraction plus a short-range repulsion, the effective collision fre-

quency has a more complicated dependence on field strength and gas tem-

perature. For low gas temperatures the collision frequency may first

decrease with increasing field strength, pass through a minimum, and

then increase. For high gas temperatures it may increase from the be-

ginning. The effect on the line shape is qualitatively illustrated in

fig. 2. The qualitative effect can be inferred from the above consi-

derations without explicit computations, just as the static field de-

pendence of the ion mobility at a given gas temperature can be inferred

from the temperature dependence of the zero-field mobility, as first dis-

cussed by Kihara [10,11,14].

The foregoing remarks can be made mathematically explicit by ex-

pressing the absorption line shape in terms of the ion mobility K in

a static electric field. Eliminating ~2 between eq. (5) and the cor-

responding expression for K to the same order of approximation [11,12,14],

we obtain

2 - 2 -
nqE K(O) c c

o 2 3 d In K(1
4= +2 + 2 2 2 d In (E /)+ ... , (12)2
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where K(0) is the zero-field limit of the mobility, so that

S= (W - W ) q/mK(0) , and

c3 = 3E11(00) + 10b00( 2 0 / 4b11(00) + 5b00(20 , (13)

which for single gases reduces to c3 = (llm + 6MA )/(3m + 4MA )

Both c2 and c3 are virtually independent of the ion-neutral force

law, which enters only weakly through A . As written, eqs. (12) and

(13) are valid for multicomponent mixtures of neutral gases.

3. Discussion

Since ICR lines are often used as a probe for chemical analysis

[18], it is important to note that A remains proportional to n

even when the line shape is non-Lorentzian.

Since the present results give A as a function of Q2 , the

line shape is predicted to be symmetric about 9 = 0 . Skewness of

line shape [19] therefore cannot be attributed to the nature of the

ion-neutral force law. A similar remark applies to the central dips

sometimes seen in ICR lines.

The convergence of the expansion in . may be slow, and eq. (12)

is likely to have a much larger range of usefulness than eq. (5), if

one judges by the analogous expressions for static-field ion mobility

and diffusion [12].

The fundamental limitations of the present theory are n << N

and elastic collisions. The other restrictions are readily removable

in principle, the cost being only mathematical complexity.
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Figure Captions

Fig. 1. Reduced ICR absorption T( 2,E) as a function of Q = (w - W )/_

for several values of reduced electric field strength & , for the model

of rigid spheres of equal mass (m = M) . The curve is Lorentzian for

0

Fig. 2. Qualitative behavior of (2,6) for a potential consisting of

a rigid sphere with long-range attraction. The plots are made for

1 at several gas temperatures. The curve for T = = is the same

as the curve for = 1 in fig. 1.
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